123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183 |
- # версия полной проверки с проверкой русской орфографии
- import os
- from difflib import SequenceMatcher
- from tqdm import tqdm
- import datetime
- import requests
- # download stopwords corpus, you need to run it once
- import nltk
- #nltk.download("stopwords")
- from nltk.corpus import stopwords
- import pymorphy2
- from string import punctuation
- # ------------------------------- НАСТРОЙКИ ------------
- # директория файла (на уровень выше, для структуры репозиториев 2 сем. 2022-23)
- BASE_DIR = os.path.abspath(os.path.dirname(__file__))
- # проверяемая директория
- LECTION_DIR = os.path.join(BASE_DIR, "Лекции")
- # ссылка для проверки
- url = "http://213.155.192.79:3001/u21deev/ISRPO_Deev/src/3cf20668f4a06cec9cb60377eca8fd575ebb67a6/%d0%9b%d0%b5%d0%ba%d1%86%d0%b8%d0%b8/DeevStartUP.md"
- # ------------------------------- / НАСТРОЙКИ ------------
- url = url.replace("src", "raw")
- #Create lemmatizer and stopwords list
- morph = pymorphy2.MorphAnalyzer()
- russian_stopwords = stopwords.words("russian")
- #Preprocess function
- def preprocess_text(text):
- translator = str.maketrans(punctuation, ' '*len(punctuation))
- words = text.translate(translator)
- words = words.lower().split()
-
- # очистка от прилегающего к слову мусора (слово, "или так")
- clear_words = []
- for word in words:
- clear_word = ""
- for s in word:
- if not s in punctuation:
- clear_word = clear_word + s
- clear_words.append(clear_word)
- tokens = []
- tokens = [morph.parse(token)[0].normal_form for token in clear_words if token not in russian_stopwords\
- and token != " " \
- and token.strip() not in punctuation \
- ]
- text = " ".join(tokens)
- return tokens, text
- #Preprocess function
- import language_tool_python
- tool = language_tool_python.LanguageTool('ru-RU')
- def orfo_text(tokens):
- bad_tokens_n = 0
- for token in tokens:
- matches = tool.check(token)
- if len(matches)>0:
- bad_tokens_n += 1
- #print(matches[0].ruleId)
- return bad_tokens_n
-
- print()
- now = datetime.datetime.now().strftime('%d-%m-%Y %H:%M')
- out_str = f"Время проверки: {now} \n"
- # print(out_str)
- response = requests.get(url)
- post_html = response.text
- post_list = post_html.split("\n")
- # проверяем правильность оформления 1й строки
- header_exist = True
- line_1 = post_list[0].strip()
- line_1 = line_1.replace(chr(65279), "")
- if (line_1[0:2]) != "# ":
- print(f"Заголовок статьи не найден: '{line_1[0:1]} {line_1[1:2]}' вместо '# '")
- print(f"{ord(line_1[0:1])} {ord(line_1[1:2])} вместо {ord('#')} {ord(' ')}")
- header_exist = False
- # наличие вопросов и списка литературы
- quest_exist = False
- source_exist = False
- for post_line in post_list:
- if (post_line[0:2] == "##"):
- if ("Вопросы" in post_line):
- quest_exist = True
- if ("Список" in post_line) and ("литературы" in post_line):
- source_exist = True
- if not (quest_exist):
- print("Вопросы не найдены")
- if not (source_exist):
- print("Список литературы не найден")
- header_text = line_1.replace("# ", "")
- header_text = header_text.replace(".", "")
- header_text = header_text.strip()
- header_text = header_text.strip()
- print(f"Заголовок: {header_text}")
- # ищем другие лекции по этой теме
- readme_path = os.path.join(BASE_DIR, LECTION_DIR, "README.md")
- try:
- with open(readme_path, encoding="utf-8") as f:
- readme_html = f.read()
- except:
- with open(readme_path, encoding="cp1251") as f:
- readme_html = f.read()
- post_tokens, post_uniq_text = preprocess_text(post_html)
- print(f"количество уникальных слов: {len(set(post_tokens))}")
- bad_tokens_n = orfo_text(post_tokens)
- bad_tokens_stat = int(bad_tokens_n / len(post_tokens) * 10000) / 100
- print(f"процент ошибок: {bad_tokens_stat}%")
- print()
- min_ratio = 1000
- min_ratio_name = ""
- readme_list = readme_html.split("\n")
- for readme_str in tqdm(readme_list):
- readme_str = readme_str.strip()
- if len(readme_str)>0:
- # строка с ссылкой на лекцию
- if "[" in readme_str:
- variant_name, t = readme_str.split("]")
- variant_name = variant_name.strip("[")
- t, variant_uri = readme_str.split("(")
- variant_uri = variant_uri.replace("),", "")
- variant_uri = variant_uri.replace(")", "")
- variant_uri = variant_uri.strip()
-
- if (not "youtube" in variant_uri) and (not "habr" in variant_uri):
- variant_path = os.path.join(BASE_DIR, LECTION_DIR, variant_uri)
- try:
- with open(variant_path, encoding="utf-8") as f:
- variant_html = f.read()
- except:
- with open(variant_path, encoding="cp1251") as f:
- variant_html = f.read()
- variant_tokens, variant_uniq_text = preprocess_text(variant_html)
- # пересечение множеств
- min_tokens_len = min([len(set(post_tokens)), len(set(variant_tokens))])
- c = list(set(post_tokens) & set(variant_tokens))
- ratio = (1 - (len(c) / min_tokens_len)) * 100
- if min_ratio > ratio:
- min_ratio = ratio
- min_ratio_name = readme_str
- print(f"min_ratio: {min_ratio:.2f}%")
- print(f"{min_ratio_name}")
|