123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120 |
- # взаимная проверка всех файлов в указанной папке
- import os
- from difflib import SequenceMatcher
- from tqdm import tqdm
- import datetime
- import requests
- # download stopwords corpus, you need to run it once
- import nltk
- #nltk.download("stopwords")
- from nltk.corpus import stopwords
- import pymorphy2
- from string import punctuation
- # from thefuzz import fuzz
- # ------------------------------- НАСТРОЙКИ ------------
- # директория файла (на уровень выше, для структуры репозиториев 2 сем. 2022-23)
- BASE_DIR = os.path.abspath(os.path.dirname(os.path.dirname(__file__)))
- # проверяемая директория
- #LECTION_DIR = os.path.join(BASE_DIR, "EASvZI", "2022-23", "Самостоятельная_работа_1")
- LECTION_DIR = os.path.join(BASE_DIR, "TZI", "Лекции", "ПМ3.1")
- # ------------------------------- / НАСТРОЙКИ ------------
- def log(str: str = None):
- global out_str
- if str == None:
- print()
- out_str += "\n"
- else:
- print(str)
- out_str += f"{str}\n"
- #Create lemmatizer and stopwords list
- morph = pymorphy2.MorphAnalyzer()
- russian_stopwords = stopwords.words("russian")
- #Preprocess function
- def preprocess_text(text):
- translator = str.maketrans(punctuation, ' '*len(punctuation))
- words = text.translate(translator)
- words = words.lower().split()
-
- # очистка от прилегающего к слову мусора (слово, "или так")
- clear_words = []
- for word in words:
- clear_word = ""
- for s in word:
- if not s in punctuation:
- clear_word = clear_word + s
- clear_words.append(clear_word)
- tokens = []
- tokens = [morph.parse(token)[0].normal_form for token in clear_words if token not in russian_stopwords\
- and token != " " \
- and token.strip() not in punctuation \
- ]
- text = " ".join(tokens)
- return tokens, text
- out_str = ""
- now = datetime.datetime.now().strftime('%d-%m-%Y %H:%M')
- log(f"Время проверки: {now}")
- files_paths = []
- files = os.listdir(LECTION_DIR)
- for file in files:
- file_path = os.path.join(LECTION_DIR, file)
- filename, fileext = os.path.splitext(file)
- if os.path.isfile(file_path) and (fileext=='.md'):
- files_paths.append(file_path)
- for file_1 in files_paths:
- for file_2 in files_paths:
- if (file_1 != file_2):
- small_filename_1 = str(file_1).replace(LECTION_DIR, "").strip("\\")
- small_filename_2 = str(file_2).replace(LECTION_DIR, "").strip("\\")
- try:
- with open(file_1, encoding="utf-8") as f_1:
- str1 = f_1.read()
- f_1.close()
- except:
- with open(file_1, encoding="cp1251") as f_1:
- str1 = f_1.read()
- f_1.close()
- try:
- with open(file_2, encoding="utf-8") as f_2:
- str2 = f_2.read()
- f_2.close()
- except:
- with open(file_2, encoding="cp1251") as f_2:
- str2 = f_2.read()
- f_2.close()
- str1_tokens, str1_uniq_text = preprocess_text(str1)
- str2_tokens, str2_uniq_text = preprocess_text(str2)
- # пересечение множеств
- min_tokens_len = min([len(set(str1_tokens)), len(set(str2_tokens))])
- c = list(set(str1_tokens) & set(str2_tokens))
- ratio = (1 - (len(c) / min_tokens_len)) * 100
- log(f"уникальность {small_filename_1} / {small_filename_2}: {ratio:.2f}%")
- log()
- with open(os.path.join(LECTION_DIR, "log.txt"), "w", encoding="utf-8") as f_log:
- f_log.write(out_str)
- f_log.close()
|