1
0

plagiat_1.v3.py 5.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183
  1. # версия полной проверки с проверкой русской орфографии
  2. import os
  3. from difflib import SequenceMatcher
  4. from tqdm import tqdm
  5. import datetime
  6. import requests
  7. # download stopwords corpus, you need to run it once
  8. import nltk
  9. #nltk.download("stopwords")
  10. from nltk.corpus import stopwords
  11. import pymorphy2
  12. from string import punctuation
  13. # ------------------------------- НАСТРОЙКИ ------------
  14. # директория файла (на уровень выше, для структуры репозиториев 2 сем. 2022-23)
  15. BASE_DIR = os.path.abspath(os.path.dirname(__file__))
  16. # проверяемая директория
  17. LECTION_DIR = os.path.join(BASE_DIR, "Лекции")
  18. # ссылка для проверки
  19. url = "http://213.155.192.79:3001/u21deev/ISRPO_Deev/src/3cf20668f4a06cec9cb60377eca8fd575ebb67a6/%d0%9b%d0%b5%d0%ba%d1%86%d0%b8%d0%b8/DeevStartUP.md"
  20. # ------------------------------- / НАСТРОЙКИ ------------
  21. url = url.replace("src", "raw")
  22. #Create lemmatizer and stopwords list
  23. morph = pymorphy2.MorphAnalyzer()
  24. russian_stopwords = stopwords.words("russian")
  25. #Preprocess function
  26. def preprocess_text(text):
  27. translator = str.maketrans(punctuation, ' '*len(punctuation))
  28. words = text.translate(translator)
  29. words = words.lower().split()
  30. # очистка от прилегающего к слову мусора (слово, "или так")
  31. clear_words = []
  32. for word in words:
  33. clear_word = ""
  34. for s in word:
  35. if not s in punctuation:
  36. clear_word = clear_word + s
  37. clear_words.append(clear_word)
  38. tokens = []
  39. tokens = [morph.parse(token)[0].normal_form for token in clear_words if token not in russian_stopwords\
  40. and token != " " \
  41. and token.strip() not in punctuation \
  42. ]
  43. text = " ".join(tokens)
  44. return tokens, text
  45. #Preprocess function
  46. import language_tool_python
  47. tool = language_tool_python.LanguageTool('ru-RU')
  48. def orfo_text(tokens):
  49. bad_tokens_n = 0
  50. for token in tokens:
  51. matches = tool.check(token)
  52. if len(matches)>0:
  53. bad_tokens_n += 1
  54. #print(matches[0].ruleId)
  55. return bad_tokens_n
  56. print()
  57. now = datetime.datetime.now().strftime('%d-%m-%Y %H:%M')
  58. out_str = f"Время проверки: {now} \n"
  59. # print(out_str)
  60. response = requests.get(url)
  61. post_html = response.text
  62. post_list = post_html.split("\n")
  63. # проверяем правильность оформления 1й строки
  64. header_exist = True
  65. line_1 = post_list[0].strip()
  66. line_1 = line_1.replace(chr(65279), "")
  67. if (line_1[0:2]) != "# ":
  68. print(f"Заголовок статьи не найден: '{line_1[0:1]} {line_1[1:2]}' вместо '# '")
  69. print(f"{ord(line_1[0:1])} {ord(line_1[1:2])} вместо {ord('#')} {ord(' ')}")
  70. header_exist = False
  71. # наличие вопросов и списка литературы
  72. quest_exist = False
  73. source_exist = False
  74. for post_line in post_list:
  75. if (post_line[0:2] == "##"):
  76. if ("Вопросы" in post_line):
  77. quest_exist = True
  78. if ("Список" in post_line) and ("литературы" in post_line):
  79. source_exist = True
  80. if not (quest_exist):
  81. print("Вопросы не найдены")
  82. if not (source_exist):
  83. print("Список литературы не найден")
  84. header_text = line_1.replace("# ", "")
  85. header_text = header_text.replace(".", "")
  86. header_text = header_text.strip()
  87. header_text = header_text.strip()
  88. print(f"Заголовок: {header_text}")
  89. # ищем другие лекции по этой теме
  90. readme_path = os.path.join(BASE_DIR, LECTION_DIR, "README.md")
  91. try:
  92. with open(readme_path, encoding="utf-8") as f:
  93. readme_html = f.read()
  94. except:
  95. with open(readme_path, encoding="cp1251") as f:
  96. readme_html = f.read()
  97. post_tokens, post_uniq_text = preprocess_text(post_html)
  98. print(f"количество уникальных слов: {len(set(post_tokens))}")
  99. bad_tokens_n = orfo_text(post_tokens)
  100. bad_tokens_stat = int(bad_tokens_n / len(post_tokens) * 10000) / 100
  101. print(f"процент ошибок: {bad_tokens_stat}%")
  102. print()
  103. min_ratio = 1000
  104. min_ratio_name = ""
  105. readme_list = readme_html.split("\n")
  106. for readme_str in tqdm(readme_list):
  107. readme_str = readme_str.strip()
  108. if len(readme_str)>0:
  109. # строка с ссылкой на лекцию
  110. if "[" in readme_str:
  111. variant_name, t = readme_str.split("]")
  112. variant_name = variant_name.strip("[")
  113. t, variant_uri = readme_str.split("(")
  114. variant_uri = variant_uri.replace("),", "")
  115. variant_uri = variant_uri.replace(")", "")
  116. variant_uri = variant_uri.strip()
  117. if (not "youtube" in variant_uri) and (not "habr" in variant_uri):
  118. variant_path = os.path.join(BASE_DIR, LECTION_DIR, variant_uri)
  119. try:
  120. with open(variant_path, encoding="utf-8") as f:
  121. variant_html = f.read()
  122. except:
  123. with open(variant_path, encoding="cp1251") as f:
  124. variant_html = f.read()
  125. variant_tokens, variant_uniq_text = preprocess_text(variant_html)
  126. # пересечение множеств
  127. min_tokens_len = min([len(set(post_tokens)), len(set(variant_tokens))])
  128. c = list(set(post_tokens) & set(variant_tokens))
  129. ratio = (1 - (len(c) / min_tokens_len)) * 100
  130. if min_ratio > ratio:
  131. min_ratio = ratio
  132. min_ratio_name = readme_str
  133. print(f"min_ratio: {min_ratio:.2f}%")
  134. print(f"{min_ratio_name}")